Exercise 23

How would you "remove the discontinuity" of f ? In other words, how would you define $f(2)$ in order to make f continuous at 2 ?

$$
f(x)=\frac{x^{2}-x-2}{x-2}
$$

Solution

Notice that because the factor of $x-2$ cancels out in the denominator, a hole (removable discontinuity) is left in the graph at $x=2$.

$$
\begin{aligned}
f(x) & =\frac{x^{2}-x-2}{x-2} \\
& =\frac{(x-2)(x+1)}{x-2} \\
& =x+1
\end{aligned}
$$

Remove the discontinuity by defining $f(2)=2+1=3$.

$$
f(x)= \begin{cases}\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\ 3 & \text { if } x=2\end{cases}
$$

